
 

Oracle® Fusion Middleware
Developer's Guide for Content Integration Suite 

11g Release 1 (11.1.1) 

E10608-01

May 2010



Oracle Fusion Middleware Developer's Guide for Content Integration Suite, 11g Release 1 (11.1.1)

E10608-01

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Will Harris

Contributor: Adam Stuenkel, David Wyman, Ron van de Crommert

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on 
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data 
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" 
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As 
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and 
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of 
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not 
developed or intended for use in any inherently dangerous applications, including applications which may 
create a risk of personal injury. If you use this software in dangerous applications, then you shall be 
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use 
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of 
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks 
of their respective owners.

This software and documentation may provide access to or information on content, products, and services 
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all 
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and 
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services.



iii

Contents

Preface .................................................................................................................................................................    v

Audience.......................................................................................................................................................     v
Documentation Accessibility .....................................................................................................................     v
Related Documents .....................................................................................................................................    vi
Conventions .................................................................................................................................................    vi

1 Introduction

1.1 CIS Architecture ..........................................................................................................................   1-1
1.2 Internationalization / Character Encoding.............................................................................   1-2
1.3 Deprecated FixedAPI .................................................................................................................   1-2

2 Understanding the UCPM API

2.1 Accessing the UCPM API ..........................................................................................................   2-1
2.2 UCPM API Methodology...........................................................................................................   2-2
2.3 CIS Initialization..........................................................................................................................   2-2
2.3.1 Initialization..........................................................................................................................   2-2
2.3.2 SCSInitializeServlet .............................................................................................................   2-3
2.4 Integration in a Web Environment...........................................................................................   2-4
2.5 Classloading.................................................................................................................................   2-5
2.5.1 Custom Class Loader ..........................................................................................................   2-5
2.5.2 Classloader Usage................................................................................................................   2-6
2.6 Object Creation............................................................................................................................   2-6
2.7 Interacting With the UCPM API...............................................................................................   2-6
2.8 Interface IContext........................................................................................................................   2-8
2.9 Interface ICISObject ....................................................................................................................   2-9
2.9.1 Property Accessors ..............................................................................................................   2-9
2.9.2 Property Object Types......................................................................................................    2-10
2.9.3 Property Collections .........................................................................................................    2-10
2.10 Adapter Configuration File ....................................................................................................    2-10
2.10.1 Adapter Element...............................................................................................................    2-11
2.10.2 Config Element..................................................................................................................    2-11

3 Understanding the SCS API

3.1 Accessing the SCS API ...............................................................................................................   3-1
3.2 Understanding the SCS API Objects ........................................................................................   3-2



iv

3.2.1 Interface ISCSObject ............................................................................................................   3-2
3.2.2 Interface ICISTransferStream.............................................................................................   3-3
3.2.3 Interface ISCSServerBinder ................................................................................................   3-4
3.2.4 Interface ISCSServerResponse ...........................................................................................   3-7
3.2.5 Interface ISCSRequestModifier..........................................................................................   3-7
3.3 Understanding the SCS API Servlets .......................................................................................   3-8
3.3.1 Servlet Descriptions.............................................................................................................   3-8
3.3.2 SCS Servlet Parameters .......................................................................................................   3-9
3.3.2.1 SCSFileDownloadServlet.............................................................................................   3-9
3.3.2.2 SCSDynamicConverterServlet.................................................................................    3-10
3.3.2.3 SCSDynamicURLServlet ..........................................................................................    3-10
3.3.3 Servlet Security..................................................................................................................    3-10
3.3.4 Servlets and API Interaction ...........................................................................................    3-11
3.4 Using the SCS APIs..................................................................................................................    3-12
3.4.1 SCS Search API..................................................................................................................    3-12
3.4.2 SCS File API.......................................................................................................................    3-12
3.4.3 SCS Document APIs .........................................................................................................    3-13
3.4.3.1 ISCSDocumentCheckinAPI......................................................................................    3-13
3.4.3.2 ISCSDocumentCheckoutAPI ...................................................................................    3-14
3.4.4 SCS Workflow API ...........................................................................................................    3-14

Index



v

Preface

The Oracle Fusion Middleware Developer's Guide for Content Integration Suite (CIS) 
provides general information on CIS, details on the Universal Content and Process 
Management API (UCPM API), an explanation of the various service APIs (SCS, SIS, 
and Common), information on extending commands, and instructions for migrating 
from previous versions.

Audience
This guide is intended for application developers and programmers. It includes  
conceptual and other information about the UCPM API, describes command 
invocation and execution, and explains how commands can be extended.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible to all users, including users that are disabled. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 
otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/support/contact.html or visit 
http://www.oracle.com/accessibility/support.html if you are hearing 
impaired.



vi

Related Documents
For more Oracle Enterprise Content Management Suite developer information, see the 
following documents in the Oracle ECM documentation set:

■ Oracle Fusion Middleware Content Integration Suite (CIS) Java API Reference

■ Oracle Fusion Middleware Developer's Guide for Remote Intradoc Client (RIDC)

■ Oracle Fusion Middleware Remote Intradoc Client (RIDC) Java API Reference

■ Oracle Fusion Middleware JCR Adapter Guide for Content Server

■ Oracle Fusion Middleware JCR Adapter Java API Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.

/ This guide uses the forward slash ( / ) to separate directories. 
Depending on your operating system, you may need to change the 
separation markers when defining directories.



1

Introduction 1-1

1Introduction

The Content Integration Suite (CIS) API offers access to Oracle Content Server by 
exposing the content server services and data in a unified object model. The Universal 
Content and Process Management (UCPM) API is modeled into a set of services APIs, 
which are API calls that communicate with the target server and the returned value 
objects from the server.

This chapter contains the following sections:

■ "CIS Architecture" on page 1-1

■ "Internationalization / Character Encoding" on page 1-2

■ "Deprecated FixedAPI" on page 1-2

1.1 CIS Architecture
CIS has a layered architecture that allows for its deployment in a number of different 
configurations. The architecture, at its core, is based on the standard J2EE Command 
Design Pattern. The layers on top of the commands provide the APIs that are exposed 
to the end user.

CIS uses the Universal Content and Process Management (UCPM) API, which uses the 
SCS API for communication to Oracle Content Server. The SCS API wraps 
communication from the content server into an object model that allows access to the 
individual object metadata.

The UCPM API allows application developers to focus on presentation issues rather 
than being concerned with how to access content server services (IdcCommand 
services). It comprises a set of command objects which encapsulate distinct actions that 
are passed to the UCPM API and then mapped to the content server. These commands 
include common content management functions such as search, check-out, and 
workflow approval. Each command is tied to one or more service calls. The UCPM 
API command objects have been developed in accordance with the J2EE Command 
Design Pattern.

This infrastructure is deployable in any J2EE-compliant application server or 
stand-alone JVM application. When deployed, the UCPM API leverages the features in 
the environment, whether this is a J2EE application server or non-J2EE server.

The UCPM API encapsulates content server business logic and validates the 
parameters of the incoming calls. It also handles communication with the content 
server, encapsulates socket communication logic (opening, validating, and streaming 
bits through the socket), and provides a strongly typed API to the available services.



Internationalization / Character Encoding

1-2 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

1.2 Internationalization / Character Encoding
Oracle recommends that encoding for CIS should be set to the same encoding as the 
Java Virtual Machine running Oracle Content Server. However, if CIS is 
communicating with multiple Oracle Content Server instances in different languages, 
then the ISCSContext.setEncoding method can be used to set the encoding to match 
that of the JVM running CIS.

1.3 Deprecated FixedAPI
The Fixed API available in pre-11g releases of CIS for communication with the Image 
Server has been deprecated. Calling getFixedAPI() throws an error.



2

Understanding the UCPM API 2-1

2Understanding the UCPM API

The Universal Content and Process Management (UCPM) API offers access to Oracle 
Content Server instances by exposing their services and data in a unified object model. 
The UCPM API is modeled into a set of services APIs that communicate with the 
target server.

This chapter contains the following sections:

■ "Accessing the UCPM API" on page 2-1

■ "UCPM API Methodology" on page 2-2

■ "CIS Initialization" on page 2-2

■ "Integration in a Web Environment" on page 2-4

■ "Classloading" on page 2-5

■ "Object Creation" on page 2-6

■ "Interacting With the UCPM API" on page 2-6

■ "Interface IContext" on page 2-8

■ "Interface ICISObject" on page 2-9

■ "Adapter Configuration File" on page 2-10

2.1 Accessing the UCPM API
The UCPM API offers access to Oracle Content Server instances by exposing their 
services and data in a unified object model. The UCPM API is modeled into a set of 
services APIs, which are API calls that communicate with the target server, and into 
ICISObject objects, which are the value objects returned from the server.

The UCPM API is available on the ICISApplication class via the getUCPMAPI() 
method. The getUCPMAPI() method returns a reference to the IUCPMAPI object, 
allowing access to all UCPM API objects. The public interface IUCPMAPI is the locator 
for the getActiveAPI object; getActiveAPI() returns a reference to the SCSActiveAPI 
object. The SCS API classes communicate with, and handle content stored on, the 
content server.

Note: Refer to Oracle Fusion Middleware Content Integration Suite (CIS) 
Java API Reference for information on the Class/Interface, Field, and 
Method descriptions.



UCPM API Methodology

2-2 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

2.2 UCPM API Methodology
The UCPM API is stateless; all method calls pass in the necessary state to the method. 
This means that you can share the reference to the CISApplication class across threads.

■ ISCSContext for the SCS API. The ISCSContext interface is the context object used 
when communicating with the content server.

■ ICISCommonContext for calling some of the CIS APIs. The ICISCommonContext 
interface identifies which adapters to query and what user information to use.

The first parameter for all methods is an IContext bean. The IContext bean holds 
context information, such as username and session ID, which is used in the underlying 
service APIs to identify the user invoking the given command.

The UCPM API is a service-oriented API that returns value objects, implemented as 
ICISObject objects (name changed from the 7.6 API). However, calling methods on the 
value objects themselves do not modify content on the server; one must call the UCPM 
API and pass in the value object as a parameter before the changes can be applied.

Example:

SCSActiveAPI activeAPI = m_cisApplication.getUCPMAPI ().getActiveAPI ();
ISCSDocumentID documentID = (ISCSDocumentID) m_cisApplication.getUCPMAPI ().
  createObject(ISCSDocumentID.class);
documentID.setDocumentID("10");
ISCSDocumentInformationResponse docResponse =
  activeAPI.getDocumentInformationAPI ().
  getDocumentInformationByID(m_context, documentID);
ISCSContent content = docResponse.getDocNode();

// call does not change object on server
  content.setTitle ("New Title");

// now item is updated on server after this call
  activeAPI.getDocumentUpdateAPI ().updateInfo (m_context, content);

2.3 CIS Initialization
Content Integration Suite (CIS) is initialized by accessing the CISApplicationFactory 
class, which resides in the com.stellent.cis.impl package.

This section contains the following topics:

■ "Initialization" on page 2-2

■ "SCSInitializeServlet" on page 2-3

2.3.1 Initialization
CIS initialization should happen once per application. The CIS APIs are stateless and 
the initialized CISApplication instance can therefore be safely shared between threads.

To initialize CIS, a number of properties must be defined. The cis.config.type should be 
server and the cis.config.server.type should be standalone. The adapter 
configuration file contains XML-formatted configuration information for 
communicating with the content servers.

Initialization Examples
Initializes the system and reads the adapterconfig.xml file from the classpath:



CIS Initialization

Understanding the UCPM API 2-3

cis.config.type=server
cis.config.server.type=standalone
cis.config.server.adapterconfig=classpath:/adapterconfig.xml

Code example:

ICISApplication application;
  URL xmlRes = new File ("adapterconfig.xml").toURL()
  Properties properties = new Properties();
  properties.setProperty(ICISApplication.PROPERTY_CONFIG_TYPE, "server");
  properties.setProperty(ICISApplication.PROPERTY_CONFIG_SERVER_ADAPTER_CONFIG,
    xmlRes.toExternalForm());

properties.setProperty(ICISApplication.PROPERTY_CONFIG_SERVER_TYPE, "standalone");
application = CISApplicationFactory.initialize(properties);

Property Definitions
The properties are defined in the following table.

2.3.2 SCSInitializeServlet
The SCSInitializeServlet is a convenient way to initialize a CISApplication instance 
from within a web application. Any of the properties described can be used by the 
SCSInitializeServlet. The SCSInitializeServlet can be configured externally via a 
properties file. The cis.initialization.file property can be set with a path 
(either a web-relative path or a classpath reference), to a property file containing the 
initialization properties. This allows you to easily externalize the initialization to a 
properties file.

By default, if SCSInitializeServlet finds no properties in the web.xml file, it will 
attempt to load a properties file from the WAR and then from the classpath using the 
default value /cis-initialization.properties. Thus, if you place a file called 
cis-initialization.properties in your classpath (that is, in the same directory as the 
adapterconfig.xml file), that file will be read during startup.

This properties file can hold all the standard initialization properties as defined in the 
CISApplication class. This allows you to move the configuration of how CIS initializes 
outside the scope of the EAR/WAR file.

Server Property Definitions
The server properties are defined below. The defaults can be overridden by creating a 
file named cis-initialization.properties and saving the file to the server-ear directory of 
the unbundled CIS distribution file (this is the directory containing the 
adapterconfig.xml file).

Property Description

cis.config.type Should be set to server.

cis.config.server.type Should be set to standalone.

cis.config.server.adapterconfig The URL pointing to the adapter configuration file. In 
addition to standard URLs, this can be in classpath 
form (classpath:/) or file form (file:/)

cis.config.server.temporarydirectory The location of the temporary directory used for file 
transfers, streaming, and file caching.



Integration in a Web Environment

2-4 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

Initialization Process
At startup, the SCSInitializeServlet servlet begins the CIS server initialization process. 
It attempts to load various properties from the web.xml file and classpath (that is, 
cis-initialization.properties). It then passes those properties to the static method 
CISApplicationFactory.initialize(…). This section describes the order of operation.

SCSIntitialize init(ServletConfig)
Called by the web application container during initialization of the web application.

1. Load properties from web.xml.

2. Load properties from classpath: /cis-initialization.properties.

3. Call CISApplicationFactory.initialize(properties).

4. Via the CISWebHelper class, it sets the CISApplication and the command 
application instance as an attribute on the servlet context.

CISApplicationFactory initialize(properties)
Called by the init(…) method of an object instance of SCSInitialize.
Calls CISApplicationFactory.initializeCisApplication(properties).

CISApplicationFactory initializeCisApplication(properties)
Determines if CIS should be started in client or server mode.
Calls CISApplicationFactory.initializeServer(properties).

CISApplicationFactory initializeServer(properties)
Called by CISApplicationFactory.initialize(properties).

1. Creates the adapter config URL (used to eventually load the adapterconfig).

2. Loads IsolatedJarClassloader.

3. Calls CISApplication.initialize(properties).

2.4 Integration in a Web Environment
This is what you would put in the web.xml if you wanted the SCSInitializeServlet to 
start up and register the CIS application:

<servlet id="scsInitialize">
  <servlet-name>scsInitialize</servlet-name>
  <display-name>SCS Initialize Servlet</display-name>
  <servlet-class>com.stellent.cis.web.servlets.SCSInitializeServlet
    </servlet-class>
  <load-on-startup>1</load-on-startup>
</servlet>

Property Description

cis.config.type Must be set to server (default).

cis.config.server.adapterconfig The URL pointing to the adapterconfig.xml file. In 
addition to standard URLs, this can also be in 
classpath form (that is, classpath:/)

cis.config.server.type.options.ejb=true Default is true (EJBs enabled).

cis.config.server.type.options.rmi=true Default is true (MI enabled).



Classloading

Understanding the UCPM API 2-5

If you add a new JavaServer Page called search.jsp, it would look like the following:

<%-- JSTL tag library --%>
<%@ taglib uri="/WEB-INF/tlds/c.tld" prefix="c" %>

<%--  CIS Application object placed in servlet context by the SCSInitialize 
servlet. Get the CIS Application and make a query --%>

<%
ICISApplication cisApplication =
  (ICISApplication) request.getSession().getServletContext().
    getAttribute ("CISApplication");
ISCSSearchAPI searchAPI =
  cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();

// create a context
ISCSContext context =
  cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();
  context.setUser ("sysadmin");

// execute the search
ISCSSearchResponse response =
  searchAPI.search (context, "dDocAuthor <substring> 'sysadmin'", 20);
%>
<!-- model the search results as desired -->

The SCSInitializeServlet places the initialized CISApplication class as an attribute in 
the javax.servlet.ServletContext with the name CISApplication. The CISApplication 
instance is available to the entire web application and is thread-safe; the one instance 
can be shared across the application.

2.5 Classloading
The UCPM 8.0.0 API uses a custom class loader to isolate dependencies on specific 
libraries from any application that uses the CIS API. Refer to the Java 2 Platform API 
specification for more information:

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/ClassLoader.html

This section contains the following topics:

■ "Custom Class Loader" on page 2-5

■ "Classloader Usage" on page 2-6

2.5.1 Custom Class Loader
Our implementation of this paradigm is found in the 
com.stellent.cis.impl.IsolatedJarClassLoader object. This custom class loader allows for 
a jar to have a nested set of jar files that serve as the library. This is the structure of the 
nested jar files:

+ cis-application-8.0.0.jar
    +-- com/stellent/cis/...
    +-- META-INF
    +-- lib/
        +-- spring-1.1.5.jar
        +-- log4j-1.0.3.jar
        +-- ...



Object Creation

2-6 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

All libraries that live in the /lib directory will be the classpath for the CIS objects. The 
classloader will query this local directory first before loading files from the parent 
classloader.

However, all of the jar files cannot be isolated as the consuming client needs to have 
access to some API classes so they can be imported into their application space. 
Therefore, only our interfaces are exposed into the application space; keeping our 
implementation and associated dependencies isolated. Since the class loader for the 
dependencies and implementation has access to the parent loader, it can access the 
same version of the interfaces as the application using the APIs. This also implies that 
a client will only be able to access the interfaces of the UCPM APIs. Any attempt to 
create an implementation class using the new keyword will result in a 
ClassNotFoundException.

2.5.2 Classloader Usage
To use this classloader, use the new com.stellent.cis.impl.CISApplicationFactory object 
to initialize the system. This object will automatically detect and use the 
IsolatedJarClassLoader if required. This means that you can still deploy CIS in the 
original format, with all the class files and libraries at the application level, if you so 
desire.

In the current version, CIS only needs the cis-client-8.0.0.jar file in the classpath; no 
other libraries are needed. Once cis-client-8.0.0.jar is in the application classpath, you 
initialize CIS using the following code:

// the initialization properties (as defined in ICISApplication)
  Properties properties = new Properties ();
  ICISApplication cisApplication = CISApplicationFactory.initialize(properties);

Once you have a reference to com.stellent.cis.ICISApplication, you can interact with 
the APIs. The difference is that now you only have access to interface objects 
(everything in com.stellent.cis.client) and not the implementation objects.

If you implement custom commands, your public interfaces will also need to be in the 
classpath, and the implementation classes packaged in the cis-client-8.0.0.jar.

2.6 Object Creation
The UCPM 8.0.0 API uses a customized classloader to hide library dependencies and 
implementation classes. Only the client interface classes are exposed to the user. 
However, this implies that you cannot use the new keyword to instantiate UCPM API 
objects. Therefore, in the UCPM API framework, use the generic _create methods 
available on the IUCPMAPI object to tell the system to instantiate an instance of the 
given object.

Since objects are mutable and only the interfaces are exposed, use the createObject 
method and set the properties that you need:

ISCSDocumentID docID =
  (ISCSDocumentID)ucpmAPI.createObject(ISCSDocumentID.class);
docID.setDocumentID("20");

2.7 Interacting With the UCPM API
With an initialized CISApplication instance, the getUCPMAPI () method (of the 
CISApplication object) returns a reference to the IUCPMAPI object, allowing access to 



Interacting With the UCPM API

Understanding the UCPM API 2-7

all UCPM API objects. The IUCPMAPI interface is the locator for the various API 
objects in the UCPM API. The IUCPMAPI object has methods to get references to the 
Active API; getActiveAPI () returns a reference to the SCSActiveAPI object for 
communicating with the content server. This allows you to access the necessary APIs 
and begin making calls through the UCPM API to the target server.

Calling API Objects Using Newly Instantiated ICISObject Objects
Many UCPM API calls take in an ICISObject or an interface that inherits from 
ICISObject. For example, in the ISCSDocumentInformationAPI (SCS API) the 
getDocumentInformationByID () method takes as a parameter a ISCSDocumentID 
object.

The fully qualified method name is:

ICISApplication.getUCPMAPI ().getActiveAPI ().getDocumentInformationAPI ()

In such cases, to obtain a reference to a valid object to pass in as a parameter, you can 
either retrieve the object reference from another ICISObject or create a new instance of 
the ICISObject using the generic createObject method available in the UCPM API. In 
CIS 11gR1, a customized classloader is used to hide our library dependencies and 
implementation classes. Only our client interface classes are exposed to the user. 
However, this implies that you cannot use the new keyword to instantiate UCPM API 
objects. Therefore, in the CIS API framework, you use the generic create method 
available on the IUCPMAPI object to tell the system to instantiate an instance of the 
given object. The createObject method will let you create a new instance of any 
ICISObject.

For example, if you wanted to query for document information, but only had the 
document ID, you would do the following:

ISCSDocumentInformationAPI documentInfoAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentInformationAPI ();

// create the document ID
ISCSDocumentID documentID =
  (ISCSDocumentID) m_cisApplication.getUCPMAPI ().
    createObject (ISCSDocumentID.class);
  documentID.setDocumentID("12345");

ISCSDocumentInformationResponse docResponse =
  documentInfoAPI.getDocumentInformationByID(m_context, documentID);

For any API that requires an ICISObject, you can use the createObject method that 
allows you to create a new instance of the API object. The createObject methods is a 
client-side method; it does not make a call to the target server. It is to be treated as a 
constructor for the ICISObject implementations.

If you needed to build up a more complex object such as a new content item to be 
checked into the content server, you would need to create several objects and populate 
the data:

// Create an empty content object
ISCSContent content =
  (ISCSContent) m_cisApplication.getUCPMAPI ().createObject(ISCSContent.class);

// Create an empty content ID object, and then give it a content ID
ISCSContentID contentID = (ISCSContentID) m_cisApplication.getUCPMAPI ().
  createObject(ISCSContentID.class);
  contentID.setContentID("my_document");



Interface IContext

2-8 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

// Set all of the properties of the content item required for check in
  content.setContentID(contentID);
  content.setAuthor (context.getUser ());
  content.setTitle ("Document Title");
  content.setSecurityGroup ("Public");
  content.setType ("ADACCT");
  content.setProperty ("xCustomProperty", "Value for custom property");

2.8 Interface IContext
The interface IContext is the generic context used for communication with the 
Command APIs. This interface handles contextual information to determine the 
current caller identity, the target adapter, and so on.

The context should be populated with the username and adapter name. The adapter 
name is determine by the adapterconfig.xml file and the username can be any valid 
user ID for the target server.

IContext has the sub-interfaces SCSContext (ISISContext extends the IContext 
interface); ISCSContext is the context object used for the SCS APIs and represents a 
users operating context when communicating with the content server.

The context object can be created by using the _create method. Thus, ISCSContext 
can be created from SCSActiveAPI.

// create an ISCSContext
  ISCSContext context =
  m_cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();

Once the context is created, it should be populated with a username and the adapter 
name. This can be done by using the accessor methods on the IContext bean.

  context.setUser ("sysadmin");
  context.setAdapterName ("myadapter");

The CIS API will take either an ICISCommonContext or an IContext object. 
ICISCommonContext is a special kind of context that is used as a container for 
ISCSContext and ISISContext. It is required in APIs that federate information between 
a number of different adapters; it identifies which adapters to query and what user 
information to use. In instances where the call only operates against one adapter at a 
time, a single IContext is required.

// create an ICommonContext
  ICISCommonContext m_commonContext =
  m_cisApplication.getUCPMAPI ().getCommonAPI ()._createCommonContext ();

Once the ICISCommonContext adapter is created, multiple adapters can be added to 
it. This is done using the ICISCommonContext.addContext() method. Any number of 
adapters can be added; all the adapters added to the ICISCommonContext are then 
used individually during a Common API call.

The same ISCSContext object can be used for multiple queries and across threads. In a 
web application context, the easiest method is to add the IContext object to the session 
and retrieve it from the session for each query.

An sample web application has been provided (located in 
/SDK/Samples/WebSample) which has a login method that first validates the 
username against the content server and, if successful, adds the IContext object to the 
HttpSession object. Refer to the LoginActionHandler class in the 
src/com/stellent/sdk/web/sampleapp/handlers/login directory for more details.



Interface ICISObject

Understanding the UCPM API 2-9

2.9 Interface ICISObject
The interface ICISObject is the base interface for all objects with metadata in the 
UCPM API. Thus, all UCPM API objects are inherited from ICISObject. The interface 
ICISObject allows for the retrieval and setting of the object properties. The objects 
returned from calls to the UCPM API are value objects in the form of beans (reusable 
software components) that encapsulate data from the server call, not live objects. 
Updating or modifying the objects in any fashion will not affect server data; only by 
directly calling a method on a given UCPM API can the server data be modified.

This section contains the following topics:

■ "Property Accessors" on page 2-9

■ "Property Object Types" on page 2-10

■ "Property Collections" on page 2-10

2.9.1 Property Accessors
Most implementations of ICISObject have their own specific property accessor 
methods. However, all properties can be retrieved by calling the getProperty () method 
on the ICISObject. The ICISObject.getProperty () method will return an ICISProperty 
object. From this object you can get the property value or property information using 
these methods:

■ getValue() returns the property value. If the property has a null value, calling 
getValue () will result in a null reference.

■ getDescriptor() returns the property descriptor that describes the contents of the 
property value.

// use the response object from the previous example - retrieve the content object
  ISCSContent content = docResponse.getDocNode ();

// get the title property
  String title = content.getTitle ();

// get the title by using the ICISObject getProperty method
  title = content.getProperty ("title").getValue ().getStringValue ();

The ICISObject property methods may throw a PropertyRetrievalException if an error 
occurs during the lookup of a given property. Since the PropertyRetrievalException is 
a RuntimeException, it does not have to be caught directly in your code. Common 
cases for the exception to be thrown is when a property is asked for but does not exist 
or when the property value contains invalid data. You can catch this exception and 
query the exception class for more details on the specific reason for the error.

ISCSProperty also allows for setting property values back into the property object. To 
do this, you can use an appropriate set method or call setProperty () and pass in the 
bean property name (both are valid and both will set the property value on the target 
object).

// set the title - using the content object from the previous example
  content.setTitle ("My New Title");

// set using the setProperty method
  content.setProperty ("title", "My New Title");



Adapter Configuration File

2-10 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

2.9.2 Property Object Types
A property object type is determined by the return value of the property method on 
the ICISObject. When using the generic getProperty() method, the ISCSPropertyValue 
has methods to get both the value of the property and the value as a specific object 
type (for example, boolean, float, long, and so on).

The ISCSPropertyValue is retrieved via the getValue() method on the returned 
ISCSProperty object.

When setting a property via the generic setProperty() method, it is important that the 
property value passed into the method is of the correct type or can be converted to the 
appropriate type via simple BeanUtils property conversion.

Apache BeanUtil is a utility for populating bean properties from the 
org.apache.commons project.

If we take a look at the ISCSContent object, the property readOnly is type boolean. 
Therefore, in the following example, the first three methods will successfully set the 
property value and the last method will not:

// correct
  content.setReadOnly (true);
  content.setProperty ("readOnly", Boolean.TRUE);
  content.setProperty ("readOnly", "true");

// incorrect
  content.setProperty ("readOnly", "not a boolean");

Since the setProperty () method takes an object as the second parameter, the boolean 
encapsulation must be used. Also, as mentioned, the method uses the BeanUtils 
property conversion and therefore the string true converts to the boolean value 
TRUE. As shown in the example above, passing a property value that cannot be 
converted (for example, not a boolean) will result in an exception.

2.9.3 Property Collections
The available list of properties can be retrieved using the getProperties() method on 
the ICISObject interface. This will return all of the available properties for a given 
object.

// using the content item from the previous example
  Collection properties = content.getProperties ();

// iterate through the collection
for (Iterator it = properties.iterator (); it.hasNext (); ) {
  ISCSProperty property = (ISCSProperty)it.next ();
  String name = property.getDescriptor ().getName ();
  ICISPropertyValue value = property.getValue ();
  if (value != null) {
     System.out.println (name + " = " + value.getStringValue ());
  }
}

2.10 Adapter Configuration File
The adapter configuration file (adapterconfig.xml) contains XML-formatted 
configuration information for communicating with your Oracle Content Server 
instance. It specifies for the CIS layer which servers to open communications with.



Adapter Configuration File

Understanding the UCPM API 2-11

A single connection to a server is called an adapter; any number of adapters can be 
configured in the adapterconfig.xml file. The adapterconfig.xml file is required to 
initialize the CISApplication instance.

This section contains the following topics:

■ "Adapter Element" on page 2-11

■ "Config Element" on page 2-11

2.10.1 Adapter Element
Each adapter configuration is a separate element in the XML markup. The adapter 
element has four attributes as shown in the following table:

A sample adapter element is shown below:

<adapter type="scs" default="true" name="myadapter">

2.10.2 Config Element
The config element includes a set of property elements that define the adapter-specific 
properties. These configuration elements are explained below.

SCS Adapter Configuration Elements
An SCS adapter communicates with the content server. The configuration element for 
the SCS adapter has four general attributes as shown in the following table:

A sample SCS configuration element is shown below:

<adapter name="myadapter" type="scs" default="true">
  <config>
    <property name="host">localhost</property>
    <property name="port">4444</property>
    <property name="type">socket</property>
    <property name="version">75</property>
  </config>

Adapter Attributes Description

type Should be scs for a connection to  Oracle Content Server.

default If true, then this is the default adapter for this type. Only one 
default adapter for a given type is allowed. 

name The adapter name.

Property Name Description

post The port of the content server.

host The hostname or IP address of the content server.

type These values may be used:

socket: Uses the content server socket communication layer.

mapped: Uses shared directories to transfer the files for file upload 
and download.

web: Uses HTTP requests to transfer files; requires a content server 
username and password for Basic HTTP Authentication (file 
download only). 



Adapter Configuration File

2-12 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

  <beans template=
  "classpath:/META-INF/resources/adapter/adapter-services-scs.jxml"/>
</adapter>

By default, the content server socket communication layer is used to stream files to 
and from the content server. However, for high-volume check in or file retrieval, you 
can set the mapped or web optimized file transfer options.

A mapped transfer loads the files from a shared directory on the content server; this 
results in much faster file transfers and does not tie up a socket that could be used for 
other requests. To use mapped transfer, you must define these properties:

A web transfer uses HTTP requests to the content server web server to download files. 
To use web transfer, you must define these properties:

A sample SCS configuration element using web transfer is shown below:

<adapter type="scs" default="true" name="myadapter">
  <config>
    <property name="port">4444</property>
    <property name="host">localhost</property>
    <property name="type">web</property>
    <property name="contentServerAdminID">sysadmin</property>
    <property name="contentServerAdminPassword">idc</property>
  </config>
</adapter>

Property Name Description

contentServerMappedVault The content server vault directory as seen from the 
application server.

appServerMappedVault The application server vault directory as seen from the 
content server.

Property Name Description

contentServerAdminID The content server administrator ID to use to authenticate 
against the content server.

contentServerAdminPassword The content server administrator password to use to 
authenticate against the content server. This password is 
encrypted.



3

Understanding the SCS API 3-1

3Understanding the SCS API

The UCPM API is modeled into a set of services APIs, which are API calls that 
communicate with the content server.

This chapter contains the following sections:

■ "Accessing the SCS API" on page 3-1

■ "Understanding the SCS API Objects" on page 3-2

■ "Understanding the SCS API Servlets" on page 3-8

■ "Using the SCS APIs" on page 3-12

3.1 Accessing the SCS API
The UCPM API is available on the CISApplication class via the getUCPMAPI () 
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object, 
allowing access to all UCPM API objects. The public interface IUCPMAPI is the locator 
for the SCS, SIS, and CIS API objects. The SCS API is available via getActiveAPI (), 
which returns a reference to the SCSActiveAPI object.

The fully qualified method name is:

CISApplication.getUCPMAPI ().getActiveAPI ()

The SCS API comprises the following:

■ ISCSSearchAPI: This is the command API implementation of the search 
commands.

■ ISCSFileAPI: Deals with the retrieval of files, and the dynamic conversions of 
files, from the content server.

■ ISCSWorkflowAPI: Deals with the workflow commands such as approval and 
rejection, viewing a user's workflow queue, and interacting with the content server 
workflow engine.

■ SCS Document APIs (ISCSDocumentCheckinAPI and 
ISCSDocumentCheckoutAPI), which deal with active content in the content 
server, including checking in and out of content, content information, and deletion 
of content.

Note: Refer to Oracle Fusion Middleware Content Integration Suite (CIS) 
Java API Reference for information on the Class/Interface, Field, and 
Method descriptions.



Understanding the SCS API Objects

3-2 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

■ Various APIs for the implementation of the administrative commands, component 
commands, and so on.

The interface ICommandFacade is the entry point into the command interface. It 
allows for interaction with the command layer, including command retrieval, 
registration, and execution. Commands are referenced by name, where a name can be 
any string. A name consisting of the dot character (".") will be treated in a hierarchy, 
where the first segment is the top-level category, and the next segment is the 
second-level category, and so on. Commands can either be retrieved by their full 
command name or by browsing all available commands.

The fully qualified class name is

com.stellent.command.ICommandFacade

Example using ISCSDocumentCheckinCommandAPI:

ISCSDocumentCheckinCommandAPI commandAPI =
  (ISCSDocumentCheckinCommandAPI)m_commandFacade.
    getCommandAPI ("document.checkin");

3.2 Understanding the SCS API Objects
The SCS API is responsible for formulating requests to the content server. SCS API 
calls translate into one or more IDC Service (Content Server Service) calls.

This section contains the following topics:

■ "Interface ISCSObject" on page 3-2

■ "Interface ICISTransferStream" on page 3-3

■ "Interface ISCSServerBinder" on page 3-4

■ "Interface ISCSServerResponse" on page 3-7

■ "Interface ISCSRequestModifier" on page 3-7

3.2.1 Interface ISCSObject
The ISCSObject is the base interface for all objects in the SCS API. It inherits from 
ICISObject and adds some specific functionality relative to the content server objects. It 
allows access to the ISCSServerResponse object that created the object, and it also 
allows access to a collection of properties that have been modified since the object was 
initialized via the getModifiedProperties () method.

The ICISObject class name is new for UCPM 8.0.0 API.

ISCSObject objects have the concept of native property names. Specifically, properties 
that are available on ISCSObject are available by two different names: the Java 
property name and the content server native name. For example, to get the title of a 
ISCSContent item, the following three methods are equal:

String title = content.getTitle ();
title = content.getProperty ("title").getValue ().getStringValue ();
title = content.getProperty ("dDocTitle").getValue ().getStringValue ();

The content server supports a metadata model that can be extended. ISCSObject 
objects can have more properties than those exposed via the getProperty () methods. 
The ISCSObject implementations expose the most common properties, but other 
properties, such as the extended metadata, are only available via the getProperty () 



Understanding the SCS API Objects

Understanding the SCS API 3-3

method. Also, the getProperties () method will list all the properties on the object, 
including properties without a corresponding getter or setter method.

for (Iterator it = content.getProperties ().iterator (); it.hasNext (); ) {
  ISCSProperty property = (ISCSProperty)it.next ();
  ISCSPropertyDescriptor descriptor = property.getActiveDescriptor ();
  if (descriptor.isBeanProperty ()) {
    System.out.println ("Property is available via get or set: " +
                         property.getDescriptor().getName ());
  } else {
    System.out.println ("Property is a hidden or extended property: " +
                         property.getDescriptor().getName ());
  }
    System.out.println ("Native property name: " + descriptor.getNativeName ());
}

The properties returned from ISCSObject implement the ISCSProperty interface, which 
adds the getActiveDescriptor () method. The ISCSPropertyDescriptor adds the 
beanProperty and nativeName properties to the available properties on an item.

The beanProperty property determines if the current property object has an available 
getter or setter method; if the property is false, this property object is available only 
via the getProperty () method.

The nativeName property returns the content server property name for the given 
property.

Date Objects
Date fields in the SCS API are handled as Java Date objects in Coordinated Universal 
Time (UTC time). All dates passed into the various properties of ISCSObject must be in 
UTC time. All date objects returned from the SCS API are in UTC time and need to be 
converted into the appropriate time zone for the particular application.

Date releaseDate = content.getReleaseDate ();

// convert from UTC time to Pacific Time Zone
  Calendar calendar = Calendar.getInstance ();
  calendar.setTime (releaseDate);
  calendar.setTimeZone (TimeZone.getTimeZone ("America/Los_Angeles"));
// use calendar to display date...

3.2.2 Interface ICISTransferStream
File streams to and from the content server have changed. In an effort to keep with the 
interface-only approach to the CIS APIs, all streams are sent via the 
ICISTransferStream interface. The interface represents the actual physical stream object 
and additionally some metadata, including filename, content length and mime-type. 
Since the ICISTransferStream is an interface, it cannot extend InputStream directly. 
Therefore, when using this object, you must first obtain the stream via a call to 
ICISTransferStream.getStream() and then manipulate the stream appropriately.

Some commands that in previous versions would return an InputStream now return 
ICISTransferStream objects. For example, if calling getFile() in the FileAPI, to access 
the stream from the content server, your code would look like:

ICISTransferStream transferStream = fileAPI.getFile (context, documentID);
InputStream inputStream = transferStream.getInputStream();

The implementation of ICISTransferStream contains all the necessary plumbing to 
transfer the stream to and from the command client to command server. Since 



Understanding the SCS API Objects

3-4 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

InputStream objects are not directly serializable, it does some extra work to put 
streams into places where the server can access them. All of the logic is hidden from 
the user of the API.

The stream instance can be obtained from the root IUCPMAPI interface using the 
method createTransferStream. That returns an empty instance of the stream container, 
which you can then use the accessors methods to set the stream properties. For 
example, below we create a transfer stream and point it at a local file:

// create the stream implementation
ICISTransferStream transferStream = ucpmAPI.createTransferStream ();

// point it at a file
transferStream.setFile (new File ("mytestdoc.doc"));

If you had a stream in memory already rather than a file handle, and you wanted to 
check in the content in that stream into the content server, you would need to specify 
all of the attributes for the stream such as a filename, content type, and the length of 
the stream.

ICISTransferStream transferStream = ucpmAPI.createTransferStream ();
  transferStream.setFileName ("sample.txt");
  transferStream.setInputStream (inputStream);
  transferStream.setContentType ("text/plain");
  transferStream.setContentLength (length);
  checkinAPI.checkinFileStream (context, content, transferStream);

3.2.3 Interface ISCSServerBinder
The CIS 8.0.0 API provides a new object, ISCSServerBinder, which is the root object 
used for all communication to and from the content server. The ISCSServerBinder 
object encapsulates a message both to and from the content server. It is a collection of 
properties, result sets, files, option lists and other specific type of information needed 
by the content server.

All API calls into the content server will create an instance of the ISCSServerBinder. 
Each API call, for example ISCSSearchAPI.search(), will use the supplied ISCSObject 
parameters to populate a binder and possibly add in other particular information. 
Likewise, all responses from the content server that are not streams are 
ISCSServerResponse objects which extend ISCSServerBinder.

As all ISCSObjects are collections of arbitrary metadata, the ISCSServerBinder is a 
collection of a number of objects metadata contained within one object. A particular 
ISCSServerBinder might contain the metadata for a content server query (see 
ISCSSearchQuery), metadata concerning a piece of content, and a list of objects dealing 
with user data. As each ISCSObject contains the particular metadata for its object, the 
ISCSServerBinder is responsible for the metadata of many objects.

Properties
As ISCSServerBinder extends the core ISCSObject interface, it has the ability to get and 
set arbitrary properties via the getProperty and setProperty methods. These arbitrary 
properties are usually where arguments for a particular content server are placed. 
They can be added directly, via the setProperty method as shown in the following code 
example.

// create an empty binder
ISCSServerBinder binder =
  (ISCSServerBinder)getUCPMAPI ().createObject (ISCSServerBinder.class);



Understanding the SCS API Objects

Understanding the SCS API 3-5

// set some properties
  binder.setProperty ("dDocTitle", "test");
  binder.setProperty ("dSecurityGroup", "Public");

Alternatively, properties can be set using the mergeObject functionality available on 
the ISCSObject interface. The following example shows creating another object, setting 
some properties on that object, and then using merge to put those properties into the 
server binder.

// create an empty content item
ISCSContent content = (ISCSContent)getUCPMAPI ().createObject (ISCSContent.class);

// set some properties
content.setTitle ("test");
content.setSecurityGroup ("Public");

// merge into binder; this copies all the properties from content into the binder
binder.mergeObject (content);

The above two examples are identical: they both result in setting the content item title 
(dDocTitle) and security group (dSecurityGroup) in the ISCSServerBinder object. 
However, by using the second method, we abstract ourselves from having to deal with 
the specifics of content server naming. The ISCSContent object handles the mapping of 
standard Java properties into content server metadata.

Result Sets
A result set represents a collection of rows returned from a content server query. This 
is exposed in ISCSServerBinder via the getResultSet and setResultSet methods. A 
result set in the SCS API is then exposed as a homogeneous list, containing a type of 
object the represents a single row of the result set. Many items returned from content 
server queries come back as result sets. As all the result sets are lists of ISCSObject 
objects, the items from the result sets can be used in other calls. For example, look at 
the following code snippet where a search is executed and the first item then has its 
contents updated:

// create an simple query
ISCSSearchQuery query =
  (ISCSSearchQuery)getUCPMAPI ().createObject (ISCSSearchQuery.class):
  query.setQueryText ("dDocName <substring> 'test' ");

// execute a search
ISCSSearchResponse response =
  getUCPMAPI ().getActiveAPI ().getSearchAPI ().search (context, query);

// search results come back as a result set of ISCSSearchResult items
ISCSSearchResult result = (ISCSSearchResult)response.getResults ().get (0);

// change the title and check it in
result.setTitle ("new title");
getUCPMAPI ().getActiveAPI ().getDocumentUpdateAPI ().
  updateInfo (context, result);

File Objects
The ISCSServerBinder allows files to be sent to the content server via the addFile 
method. This method takes an ICISTransferStream. The resulting file is sent to the 
content server, along with the binder, during the request. Adding a file is similar to 
adding a property:



Understanding the SCS API Objects

3-6 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

// create an empty stream
ICISTransferStream stream = getUCPMAPI ().createTransferStream ();

// point the stream at a local file
stream.setFile (new File ("testfile.txt"));

// add the stream to the binder
serverBinder.addStream ("myFile", stream);

When the above binder is sent to the content server, the stream will be transferred 
along with the binder. Inside the content server, the stream will be available under the 
"myFile" key which was specified when adding the stream to the binder.

Object Copying and Casting
Each ISCSObject in the SCS API has an object that holds the data in a low-level format 
compatible with Oracle Content Server. This object, referred to as a data object, is used 
by all ISCSObject implementations. This implies that any ISCSObject can be mutated 
to any other type of ISCSObject. There are two methods that expose this functionality: 
the castObject and copyObject methods available on the ISCSObject interface.

Both methods take in a single parameter: a class type representing the type of object 
that should be created. A call to castObject will result in the creation of a new object 
that points at the same backing data of the object it was invoked against. This implies 
that changes to the original object will be reflected in the object returned from the 
castObject call as well. A call to copyObject will result in a copy of the backing data 
being made, allowing the newly created object to act independently from the original 
object.

For example, imagine there is a custom content server service called "MY_DOC_INFO" 
which is similar to the standard "DOC_INFO" but it does some extra business logic 
processing. However, the returned binder from the "MY_DOC_INFO" call is very close 
to the "DOC_INFO" call. Since there is no explicit API call in the SCS API to call this 
"MY_DOC_INFO" service, we have to use the generic executeIDCService call. But we 
can use the castObject method to change the return type into something more user 
friendly:

// build our custom call
ISCSServerBinder binder =
  (ISCSServerBinder)getUCPMAPI ().createObject (ISCSServerBinder.class);
  binder.setService ("MY_DOC_INFO");

// create a document ID and add it to the binder
ISCSDocumentID documentID =
  (ISCSDocumentID)getUCPMAPI ().createObject (ISCSDocumentID.class);
  documentID.setDocumentID ("12345");
  binder.mergeObject (documentID);

// execute the call
ISCSServerResponse response =
  (ISCSServerResponse)getUCPMAPI ().getAdministrativeAPI ().
    executeIDCService (context, binder);

// use the cast to change it to a ISCSDocumentInformationResponse
ISCSDocumentInformationResponse infoResponse =
  (ISCSDocumentInformationResponse)response.
    castObject (ISCSDocumentInformationResponse.class);

// use the info response as usual
System.out.println ("Title: " + infoResponse.getDocNode ().getTitle ());



Understanding the SCS API Objects

Understanding the SCS API 3-7

As mentioned above, the castObject call links the two objects by sharing the same 
backing data. In the above example, any changes made to the response object would 
be reflected in the infoResponse object as well:

// set a property on the response
response.setProperty ("customProperty", "customValue");

// value is then available in the infoResponse object
String value = infoResponse.getPropertyAsString ("customProperty");

If copyObject was called instead, the response and infoResponse would be 
independent of each other. The castObject creates a smaller memory footprint than 
copyObject, since the result from a castObject call does not create a new backing data 
object.

3.2.4 Interface ISCSServerResponse
The result of a call to the SCS API is usually an ISCSServerResponse object. The 
ISCSServerReponse is the base interface for all the response objects. It encapsulates the 
response from the content server for the last request. Most methods have specific 
implementations of this interface, which provide properties that are specific to those 
responses. See the JavaDocs for the specific response objects, and the properties 
available to each.

In the current release, some calls that previously returned references to an InputStream 
now return a ICISTransferStream object instead. See Interface ISCSRequestModifier 
below on how to use the new transfer stream interface.

3.2.5 Interface ISCSRequestModifier
All requests to the content server via the SCS API result in the creation of an 
ISCSServerBinder object. In certain situations, it becomes necessary to change the 
binder contents for a given API call to match the requirements of a specific content 
server. The ISCSRequestModifier interface is designed for this very purpose: to 
augment a call to the content server with custom modifications.

All APIs in the SCS API have a corresponding method that takes as the first parameter 
an ISCSRequestModifier object. Look at the API for ISCSSearchAPI:

/**
   * Command the implements searching against the content server.
  * @param SCSContext the context object representing the current user
  * @param searchQuery the content server query object
  */

public com.stellent.cis.client.api.scs.search.
  ISCSSearchResponse search (com.stellent.cis.client.api.scs.context.
    ISCSContext SCSContext,
    com.stellent.cis.client.api.scs.search.ISCSSearchQuery searchQuery)
  throws com.stellent.cis.client.command.CommandException;

/**
  * Command the implements searching against the content server.
  * @param requestModifier modify the request
  * @param SCSContext the context object representing the current user
  * @param searchQuery the content server query object
  * @see com.stellent.cis.server.api.scs.commands.search.SearchCommand
  */



Understanding the SCS API Servlets

3-8 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

public com.stellent.cis.client.api.scs.search.
  ISCSSearchResponse search (com.stellent.cis.client.api.scs.
    ISCSRequestModifier requestModifier, com.stellent.cis.client.api.scs.context.
    ISCSContext SCSContext, com.stellent.cis.client.api.scs.search.I
    SCSSearchQuery searchQuery)
    throws com.stellent.cis.client.command.CommandException;

The second API takes all the parameters of the first, with the additional 
ISCSRequestModifier argument. The standard Search API, and all its logic, can be 
used and custom logic added. For example, imagine a custom component installed on 
the content server that will do some extra processing if it find the 
"myCustomProperty" property set during a search query. To do this with CIS, we can 
use the ISCSRequestModifier to change the binder as follows:

// build a search query
ISCSSearchQuery query =
  (ISCSSearchQuery)getUCPMAPI ().createObject (ISCSSearchQuery.class);
  query.setQueryText ("dDocName <substring> `test`");

// build a request modifier
ISCSRequestModifier modifier =
  (ISCSRequestModifier)getUCPMAPI ().createObject (ISCSRequestModifier.class);

// access the binder off the modifier and add in our custom data
modifer.getServerBinder().setProperty ("myCustomProperty", "customValue");

// execute the search as normal
getUCPMAPI ().getActiveAPI ().getSearchAPI ().search (modifier, context, query);

Now the binder we modified will be used during the search call. Our custom property 
value will get sent along with the standard search call. This same method can be used 
to set any properties, add files, set result sets or even override which service call is 
being made on the content server.

3.3 Understanding the SCS API Servlets
The SCS API requires that a number of servlets be available to the system while 
operating in a J2EE/Web environment and running in server mode.

This section contains the following topics:

■ "Servlet Descriptions" on page 3-8

■ "SCS Servlet Parameters" on page 3-9

■ "Servlet Security" on page 3-10

■ "Servlets and API Interaction" on page 3-11

3.3.1 Servlet Descriptions
This table lists the servlet names and the appropriate configuration information 
needed in the web.xml file for a given web application:

Fully Qualified Name Mapping Description

SCSFileDownloadServlet

com.stellent.web.servlets. 
SCSFileDownloadServlet

/getfile Allows clients to retrieve files 
from the content server. 



Understanding the SCS API Servlets

Understanding the SCS API 3-9

3.3.2 SCS Servlet Parameters
This section provides a description of the parameters for these servlets:

■ "SCSFileDownloadServlet" on page 3-9

■ "SCSDynamicConverterServlet" on page 3-10

■ "SCSDynamicURLServlet" on page 3-10

This section does not specify any of the available security parameters, which are 
detailed in "Servlet Security" on page 3-10. All calls made to the content server use the 
identity as specified in the servlet security section.

3.3.2.1 SCSFileDownloadServlet

SCSCommandClientServlet

com.stellent.web.servlets. 
SCSCommandClientServlet

/scscommandclient Publishes the CIS server 
configuration information for 
CIS clients. 

SCSFileTransferServlet

com.stellent.web.servlets. 
SCSFileTransferServlet

/scsfiletransfer Allows UCPM APIs to transfer 
files to a CIS client. 

SCSInitialize

com.stellent.web.servlets. 
SCSInitialize

N/A Initializes the CIS Application 
instance. Should be set as a 
LoadOnStartup servlet. 

SCSDynamicConverterServlet

com.stellent.web.servlets. 
SCSDynamicConverterServlet

/getdynamicconversion/* Executes a dynamic conversion 
and streams the result to the 
client. 

SCSDynamicURLServlet

com.stellent.web.servlets. 
SCSDynamicURLServlet

/scsdynamic/* Retrieves dynamic files from 
the content server; used when 
rewriting the dynamically 
converted document URLs. 

Property Required Description

adapterName true The adapter name to query for the 
document.

dDocName n/a The content ID of the document to 
retrieve.

rendition false The content rendition; valid only 
when specifying the dDocName.

revisionSelection false The revisionSelection to use when 
selecting content; valid only when 
specifying the dDocName.

forceStream false If true, the contents are streamed 
from the content server via the GET_
FILE call regardless of optimized file 
transfer settings for the adapter; 
defaults to false.

Fully Qualified Name Mapping Description



Understanding the SCS API Servlets

3-10 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

3.3.2.2 SCSDynamicConverterServlet

3.3.2.3 SCSDynamicURLServlet

3.3.3 Servlet Security
All servlets, except for SISFileDownloadServlet and SCSInitializeServlet, make UCPM 
API calls and therefore must have a user context. By default, they will use the 
HttpServletRequest.getUserPrincipal() method to determine the user ID and pass that 
ID via the ISCSContext object to the UCPM API call. This behavior can be overridden 
by specifying a couple of initialization parameters to the servlet:

■ principalLookupAllowed: If set to TRUE, the servlet will look for a user ID in the 
configured scope. The default scope is session.

■ principalLookupScope: The scope of the lookup. Valid if 
principalLookupAllowed is TRUE. The defined scope will be used to call the 
getAttribute () method to discover the name of the current user; can be either 
request, session, or application. The default is session.

■ principalLookupName: The name of the scoped parameter that holds the user ID. 
Valid if principalLookupAllowed is TRUE. The default is principal.

■ getUserPrincipalEnabled: If set to FALSE, no call will be made to the 
HttpServletRequest.getUserPrincipal () method to determine the user ID. The 
default is TRUE.

Property Required Description

adapterName true The adapter name to query for the 
document.

contentID Either contentID or 
documentID is required.

The content ID (dDocName) of the 
document to retrieve.

documentID n/a The document ID (dID) of the 
document to retrieve.

rendition false The rendition of the document to 
retrieve; valid only if contentID is 
specified.

revisionSelectionMethod false The revisionSelectionMethod to use 
to select the document; valid only if 
contentID is specified.

viewFormat false The view format of the conversion 
(that is, Native or WebViewable).

useAlternate false If true, use the alternate file for 
conversion; default is false.

Property Required Description

adapterName true The adapter name to query for the 
document; not passed in as a 
parameter, but, rather, specified as 
the last segment on the URL:

/cis-server/scsdynamic/ 
<adaptername>?...

fileUrl true The relative path to the content 
server file to retrieve.



Understanding the SCS API Servlets

Understanding the SCS API 3-11

■ principal: The default user ID if no user ID can be determined. The default is 
guest.

To determine the current user ID, the servlets will first check the status of the 
principalLookupAllowed flag. If TRUE, it looks up the name of the user by 
determining the scope as set by the parameter principalLookupScope. With the current 
scope, the getAttribute () method is called, using principalLookupName as the 
parameter. If it is unable to locate a principal, it then checks the status of the 
getUserPrincipalEnabled flag. If that flag is TRUE, it calls the 
HttpServletRequest.getUserPrincipal () method. If that returns null, it uses the default 
principal to execute the request.

Without any changes to the servlet, the default behavior is to check the 
HttpServletRequest.getUserPrincipal () method and then use the default, if necessary. 
The other checks on the request, session, and application are done only if specified in 
the init-param of the servlet definition in the web.xml file.

3.3.4 Servlets and API Interaction
The ISCSFileAPI.getDynamicConversion() method performs a dynamic conversion of 
the given document (assuming the Dynamic Converter component is installed on the 
content server). The getDynamicConversion() call will also rewrite the returned URLs, 
so that they point back to the CIS servlets (as opposed to pointing directly to the 
content server) and display properly in the Web/Portal environment when they are 
rendered.

The rewritten URLs point back to SCSDynamicURLServlet, which then retrieves the 
item from the content server, via the SCS API, and streams it back to the client. The 
servlet determines the user ID for the context by the method described in "Servlet 
Security" on page 3-10.

Since the servlet determines the user ID, the user who executed the 
getDynamicConversion() call might not have the same user ID as the user clicking a 
link on the rendered HTML. This would be the case if the 
HttpServletRequest.getUserPrincipal() user ID does not match the ISCSContext user 
ID

In that event, the SCSDynamicURLServlet can be directed to look for a user parameter 
on the session by customizing it via the methods described under "Servlet Security" on 
page 3-10. Alternatively, SCSDynamicURLServlet can call the 
getDynamicConversion() and pass in an ISCSConvertedUrlInfo object that allows a 
user to optionally add parameters to the URL, which can then be used by your 
application to identify the context.

For example, if your application stored the current User ID in a session attribute 
named stellentPrincipal, you would modify the web.xml for the 
SCSDynamicURLServlet (and other servlets, as necessary) as follows:

<servlet>
  <servlet-name>scsdynamic</servlet-name>
  <servlet-class>com.stellent.web.servlets.SCSDynamicURLServlet</servlet-class>
  <init-param>
    <param-name>sessionPrincipalAllowed</param-name>
    <param-value>true</param-value>
  </init-param>
  <init-param>
    <param-name>sessionPrincipalName</param-name>
    <param-value>stellentPrincipal</param-value>
  </init-param>
</servlet>



Using the SCS APIs

3-12 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

3.4 Using the SCS APIs
The SCS Search, SCS File, SCS Document, and SCS Workflow APIs are discussed and 
sample code provided. These APIs perform task such as searching, checking in and 
out of content, and workflow approval and rejection.

It is assumed that you have initialized a CISApplication instance (referred to as m_
cisApplication) and created a context object (referred to as m_context). Additional 
samples can be found in the SDK/Samples/CodeSamples/ directory.

This section contains the following topics:

■ "SCS Search API" on page 3-12

■ "SCS File API" on page 3-12

■ "SCS Document APIs" on page 3-13

■ "SCS Workflow API" on page 3-14

3.4.1 SCS Search API
The ISCSSearchAPI is the command API implementation of the search commands. You 
can use ISCSSearchAPI to search the content server using the following code:

// get a handle to the SCS Search API
ISCSSearchAPI searchAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();
ISCSSearchResponse searchResponse =
  searchAPI.search (m_context, "dDocTitle <substring> 'HR'",  25);

// iterate all results
for (Iterator it = searchResponse.getResults ().iterator (); it.hasNext (); ) {
  ISCSSearchResult searchResult = (ISCSSearchResult)it.next ();

// print out the title and author
System.out.println ("Found result: " + searchResult.getTitle () + " by " +
  searchResult.getAuthor ());
}

3.4.2 SCS File API
The ISCSFileAPI deals with the retrieval of files, and the dynamic conversions of files, 
from the content server. A file can be retrieved simply by passing in the ID for the 
content. Alternatively, different versions of the file can be retrieved by using the 
optional ISCSFileInfo object to obtain references to the Web and Alternate versions of 
the file.

// get the SCS File API
ISCSFileAPI fileAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI ().getFileAPI ();

ICISTransferStream transferStream =
  fileAPI.getFile (m_context, content.getDocumentID ());

InputStream stream = transferStream.getInputStream();
// do something with the stream...

You can also use the _createFileInfo() method to get an ISCSFileInfo object. This object 
has several properties, which allow one to further select which rendition of a file to 
retrieve. The following sample uses the fileinfo object to get the Web Viewable 
rendition of a file. A similar process can be used to get the Alternate rendition.



Using the SCS APIs

Understanding the SCS API 3-13

// get the web viewable version of the file
ISCSFileInfo fileInfo =
  (ISCSFileInfo) m_cisApplication.getUCPMAPI ().createObject(ISCSFileInfo.class);
  fileInfo.setRendition ("Web");

// get the file
ICISTransferStream transferStream =
  fileAPI.getFile (m_context, content.getDocumentID (), fileInfo);
  InputStream stream = transferStream.getInputStream();
// do something with the stream...

The SCS File API can be used to generate HTML renditions of the content via the 
Dynamic Converter component of the content server (you must have the Dynamic 
Converter component installed).

In a similar fashion to the getFile () calls, you can either call getDynamicConversion () 
with an ID to retrieve the HTML conversion, or you can use the ISCSFileInfo and 
ISCSConvertedFileInfo objects to pass information into the API to process conversion 
rules and apply explicit templates.

ICISTransferStream transferStream =
  fileAPI.getDynamicConversion (m_context, content.getDocumentID ());
// process the stream...

The following sample combines the above features in one method that dynamically 
converts the alternate rendition of a given content object by using a custom conversion 
template.

// create the converted file bean and set our properties
ISCSConvertedFileInfo convertedInfo = fileAPI.__createConvertedFileInfo ();
convertedInfo.setConversionLayout ("custom_layout");
convertedInfo.setRendition ("Alternate");

// execute the dynamic conversion
ICISTransferStream transferStream =
  fileAPI.getDynamicConversion (m_context, content.getDocumentID (),
    convertedInfo);
// do something with the stream...

3.4.3 SCS Document APIs
The SCS Document APIs deal with content in the content server, including the 
checking in and out of content, content information, and the deletion of content.

This section provides a description of these APIs:

■ "ISCSDocumentCheckinAPI" on page 3-13

■ "ISCSDocumentCheckoutAPI" on page 3-14

3.4.3.1 ISCSDocumentCheckinAPI
This API deals with the check-in of all content to the content server. For a simple 
check-in of a file from disk, the following code will work:

// get the checkin api
ISCSDocumentCheckinAPI checkinAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();

// create an empty content object with the specified content ID
ISCSContent content =
(ISCSContent) m_cisApplication.getUCPMAPI ().createObject(ISCSContent.class);



Using the SCS APIs

3-14 Oracle Fusion Middleware Developer's Guide for Content Integration Suite

ISCSContentID contentID =
(ISCSContentID) m_cisApplication.getUCPMAPI ().createObject(ISCSContentID.class);
  contentID.setContentID("my_test_file");
  content.setContentID(contentID);
  content.setAuthor (m_context.getUser ());
  content.setTitle ("Custom Title");
  content.setSecurityGroup ("Public");
  content.setType ("ADACCT");

// get the file stream
File myFile = new File ("c:/test/testcheckin.txt");
ICISTransferStream transferStream =
  m_cisApplication.getUCPMAPI ().createTransferStream();
  transferStream.setFile(myFile);

// execute the checkin
checkinAPI.checkinFileStream (m_context, content, transferStream);

In many deployments of the content server, there are required extended properties that 
need to be set for a new piece of content. These properties can be set on the content 
object via the setProperty() call available to all ICISObject objects. For example, some 
custom properties can be set as follows:

// set an extended property
  content.setProperty ("xCustomProperty", "Custom Value");

You can use the setProperty() method to set all the properties as opposed to calling the 
setter methods. You can use either the JavaBean name (for example, title) or the native 
content server property name that the JavaBean property corresponds to (that is, 
dDocTitle). In the next sample, we will set the title property in three ways, all 
equivalent:

// set via a standard property setter
  content.setTitle ("My Title");

// set a standard property using the JavaBean property name
  content.setProperty ("title", "My Title");

// set a property using the native content server property name
  content.setProperty ("dDocTitle", "My Title");

3.4.3.2 ISCSDocumentCheckoutAPI
This API deals with checking out content from the content server. Content items are 
identified by their ID.

// get the checkout api
ISCSDocumentCheckoutAPI checkoutAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckoutAPI ();

// checkout the file
checkoutAPI.checkout (m_context, content.getDocumentID ());

3.4.4 SCS Workflow API
The ISCSWorkflowAPI deals with the workflow commands such as approval and 
rejection, viewing a user's workflow queue, and interacting with the content server 
workflow engine. The following sample code shows an example of querying the 
workflow engine for the workflows currently active in the system:



Using the SCS APIs

Understanding the SCS API 3-15

// get the workflow API
ISCSWorkflowAPI workflowAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI().getWorkflowAPI ();
ISCSWorkflowResponse workflowResponse =
  workflowAPI.getActiveWorkflows (m_context);

// iterate through the workflows
for (Iterator it = workflowResponse.getActiveWorkflows().iterator();
  it.hasNext (); ) {
    ISCSWorkflow workflow = (ISCSWorkflow)it.next ();
    String name = workflow.getName ();
    String status = workflow.getWorkflowStatus ();
    System.out.println ("SCS workflow: " + name + "; status = " + status);
}

The most common interaction with workflows is to reject them or approve them and 
advance them to the next step in the workflow. The following code illustrates how to 
get a user's personal workflow queue and approve all workflows pending:

// get the workflow API
ISCSWorkflowAPI workflowAPI =
  m_cisApplication.getUCPMAPI ().getActiveAPI().getWorkflowAPI ();

// get the workflow queue
ISCSWorkflowQueueResponse queueResponse =
  workflowAPI.getWorkflowQueueForUser (m_context);
for (Iterator it = queueResponse.getWorkflowInQueue().iterator(); it.hasNext();) {
ISCSWorkflowQueueItem queueItem =
  (ISCSWorkflowQueueItem)it.next();

// approve the workflow
workflowAPI.approveWorkflow(m_context, queueItem.getDocumentID ());
}



Using the SCS APIs

3-16 Oracle Fusion Middleware Developer's Guide for Content Integration Suite



Index-1

Index

A
accessor methods, 2-9
Adapter element, 2-11
API object

ISCSObject, 3-2
ISCSServerResponse, 3-2

API objects, calling, 2-7

C
character encoding, 1-2
CIS API

calling methods, 2-2
command objects, 1-1
ICISCommonContext bean, 2-2
IContext bean, 2-2
object metadata, 1-1
object model, 1-1

class
com.stellent.web.servlets.SCSCommandClientServ

let, 3-9
com.stellent.web.servlets.SCSDynamicConverterSe

rvlet, 3-9
com.stellent.web.servlets.SCSDynamicURLServlet,

3-9
com.stellent.web.servlets.SCSFileDownloadServlet,

3-8
com.stellent.web.servlets.SCSFileTransferServlet,

3-9
com.stellent.web.servlets.SCSInitialize, 3-9

Command Design Pattern, 1-1
config element, 2-11
Content Integration Suite

layered architecture, 1-1

D
DocumentCheckin, 3-13
DocumentCheckout, 3-14

G
getProperty() method, 2-10, 3-2
getUCPMAPI () method, 2-1, 3-1
getUserPrincipalEnabled, 3-10
getValue() method, 2-10

I
ICISCommonContext, 2-8
ICISCommonContext bean, 2-2
ICISObject, 2-7, 2-9

property methods, 2-9
ICISObjects, 2-2
IContext, 2-8
IContext bean, 2-2
initialization parameter

getUserPrincipalEnabled, 3-10
principal, 3-11
principalLookupAllowed, 3-10
principalLookupName, 3-10
principalLookupScope, 3-10

internationalization (character encoding), 1-2
ISCSFileAPI, 3-12
ISCSObject object, 3-2
ISCSSearchAPI, 3-12
ISCSServerResponse, 3-2
ISCSWorkflowAPI, 3-14

J
J2EE

Command Design Pattern, 1-1
compliant application server, 1-1

Java Virtual Machine. See JVM
JVM

application, 1-1

O
Objects, 2-8, 2-9

P
principal, 3-11
principalLookupAllowed, 3-10
principalLookupName, 3-10
principalLookupScope, 3-10
property accessors, 2-9
property collections, 2-10
property object type, 2-10
PropertyRetrievalException, 2-9



Index-2

S
SCS API

date format, 3-3
DocumentCheckin, 3-13
DocumentCheckout, 3-14
explained, 3-1
interaction with servlets, 3-11
ISCSFileAPI, 3-12
ISCSSearchAPI, 3-12
ISCSWorkflowAPI, 3-14

Servlet security, 3-10
Servlets and API interaction, 3-11
setProperty () method, 2-10

U
UCPM API

calls, 2-7
explained, 1-1, 2-1, 3-1
ICISObject, 2-7
methodology, 2-2
SCS API, 3-1

UTC time, 3-3

V
value objects, 2-9


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	1.1 CIS Architecture
	1.2 Internationalization / Character Encoding
	1.3 Deprecated FixedAPI

	2 Understanding the UCPM API
	2.1 Accessing the UCPM API
	2.2 UCPM API Methodology
	2.3 CIS Initialization
	2.3.1 Initialization
	2.3.2 SCSInitializeServlet

	2.4 Integration in a Web Environment
	2.5 Classloading
	2.5.1 Custom Class Loader
	2.5.2 Classloader Usage

	2.6 Object Creation
	2.7 Interacting With the UCPM API
	2.8 Interface IContext
	2.9 Interface ICISObject
	2.9.1 Property Accessors
	2.9.2 Property Object Types
	2.9.3 Property Collections

	2.10 Adapter Configuration File
	2.10.1 Adapter Element
	2.10.2 Config Element


	3 Understanding the SCS API
	3.1 Accessing the SCS API
	3.2 Understanding the SCS API Objects
	3.2.1 Interface ISCSObject
	3.2.2 Interface ICISTransferStream
	3.2.3 Interface ISCSServerBinder
	3.2.4 Interface ISCSServerResponse
	3.2.5 Interface ISCSRequestModifier

	3.3 Understanding the SCS API Servlets
	3.3.1 Servlet Descriptions
	3.3.2 SCS Servlet Parameters
	3.3.2.1 SCSFileDownloadServlet
	3.3.2.2 SCSDynamicConverterServlet
	3.3.2.3 SCSDynamicURLServlet
	3.3.3 Servlet Security
	3.3.4 Servlets and API Interaction

	3.4 Using the SCS APIs
	3.4.1 SCS Search API
	3.4.2 SCS File API
	3.4.3 SCS Document APIs
	3.4.3.1 ISCSDocumentCheckinAPI
	3.4.3.2 ISCSDocumentCheckoutAPI
	3.4.4 SCS Workflow API


	Index
	A
	C
	D
	G
	I
	J
	O
	P
	S
	U
	V


